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APPLICATIONOF HUCLEAR~ELS

r. c. Young, E. D. Arthur, and D. C. Hedland
Losi Alamos Scientific Laboratory, Vnivareity cf California

Theoretical Dlvlslon
LOIIAlamos, R%”!kxico 6?5k5 ~.S.A.

The der~icp=es: of our ●xtensive ●xperimental nuclear darn baae over the past three
decades has tee: lc:c~Fanied by parallel advancement of nuclear theory ant models ueed te
tascri}c ant int{r~ret the maaaurenenca. This theoretical capability is ‘mpcrtant be-
caust G: =ny :.uc:esr data requiranenca chat are still difficult, impractical, or even
i~pssgik:i :C ret: with ~rescfit ●xperimantal techniques. Exa=ples cf suet. data needs
are ne:trc:. :rcuk sections for unstable fission products, which art required for neu:rcn
ahso--ptic~ cc “rections in reactor calculations: crosm sections for tranaactinide nuclei
tha: cofi:rcl Frcd~c:ior. of long-lived nuclaar Waetee and the extanaive desimetry, actl-
t-aticn, and neutronic data requiremante to M YeV that must accozpany develop~ent of tht
FUS:C: %:erials Irradiation Test (FHIT) facility. In recent yaara systems:ic irprove-
ms?:s ha~-e be~n nade in the nuclear wdelg ●nd coda ueed in data ●valuation am?, nwst
i~crtantlv, in the methods used te derlva physically baaed parameters for mdel calcu-
la:icxs. ~.e newly issued E%71FJ’B-Vevaluated Iata library relies in rany caaes OF.nu-
cl~~r reaction theory baaed on compound-nucleus Hauser-Faahbach, preeqcilibriur. and di-
rect reactior. ~chania=s as wall as spherical and deformed optical-model theories. The
development am! applicatioua of nuclear mdela for data ●valuation are discussed in this
papar, with amphaaia on the 1-40 lfaV neutron amrgy ranga.

Tbt recuirenent~ for ●valcatet nuclear data that
res::: frrr che varicus xclear ap;lic=:ions are suffi-
cit::~y ~rc~d tha: the usc p: nurlear theory and CXIdels
is essentiai tc conFleRe:: the ava:lakle ●xperi~ental
~aca baac. A nurzber of areas ex:st where nuclear mod-
el= :Iay a very i~pcrtant rcl~. A classic exau~lc la
tht prob:er. cf deter?ininF nuclear data for radioactive
or unstakle tar~ec nuclei k*ic!., of course, are very

cifficult tc measure and ttIich are equired in a numbar
of a?plicaticnsm Suc!I applicaticn~ Include calcui~tion
C: neutron abscr;tio~ and scatcerir.~ by fiasicn producca
in t!wrral and fast reactcrh; production, depletion, and
absc:ptic~ calculations frr actinide nuclides Inportant
in =aste :.a:&tere:;: ant disp~sal studias; and ●ctivation
cdculatic.ns for fusion raactor components and ahialding
that can IEVCIVE unstable interwdlate nuclai. A sec-
ond ●rea where nuclear nmdela are very important la the
●xtension of the ●valuat~d data baae lmto tha 20-50 MsV
incident neutron anargy range, where ●xperimental data
●re mch more limited than ●t lower ●nergiaa. ALthough
biomedical and shielding data needa have axiated in
thig region for many yeara, the planned develo~t of
d + Li neutron ●ourcas, such ●a the Fusion Haterfda
Irradiation Taat facility (PHIT), hea @van new Impatua
to developing ●valuatad data librariaa ●bovu 20 Us\’.
It should alac be mntioned that in the mre c-n
spplicationa models ●till play ●n important rola in in-
terpolating and ●xtrapolating data such as secondary
angular and •~)ergy distributions that have not been
maaured with the same thoroughneaa ●s ●nargy-dependent
cross aactions. For ●xampla, the energy range batwaen
9-lL FleY la only sparsely maaaured for many nuclei.
Finally, nuclear models hove advanced to a etate that
they can occ~sionally be uaaful to evaluator in dacid-
ing amng diacrapant ●xperimental .eaulta.

The uee of nuclear theory in data ●valuations haa
●xpanded ●nd become mre ●ophiuticated over the yeara
in mch the ●ama way that the ~per~nta] &ta baae
haa devaloped. In this papar we will outline ems of
the ●dvancea that havw occurred in the racent paat in
applying nuclear theory and wdala to data ●valuation.
We will daacribe briefly ●cme of tha faaturaa of nu-
clear model codes in co-n uae and will ●how ●xamplea

of their dpplicaticn in recent ●valuations. Because C!
time and space limitations, we bwill restrict the di~-
I Jaaion mainly to neutron-intiucat and fusion reactions
in the I-L@ ?te’: ener~y regicn, which excludes the re-
●elved and unrenc,~ved re~onance regicn~ for the heavier
nuclei. We will clcse with some ebservatirns and rc:-
mnts an the recently inaued Varsion V of F.X12F:9.

l’se @f Nuclear Theory in Light Element Evaluates:=

Nuclear mdels used in ●~aluatlen ran~e frw the
●lmost trivially simple to the very coeplex, dependinF
upon what is appropriate and availat.]e for a given eit-
uation. An ●xample of the formet is the uae of SIE;lC
thrae-body phas~ space calculations tc reprecen: sec-
ondary energy distributions fro: Fraakup of lipht sys-
tems. This technique la used in the ‘Li ENDFJE-V evalu-
●tion’ to reprcaent the Continuur part of the neutrcm
●peccrum fr.n. :t.- 61’(n,nr!)’He raaction, aa illustrated
in Fig. 1. N.:* tk.: ●laatlc scattering ia omitted
from the calculated cumaa in Fig. 1. The calculated
spectral shape agreea reasonably with the ●xperimental
data and providaa a uaaful davice for inferring the
●pectra at unrnaaured mar~iea and anglca. There ■re
many light nuclei, however, for which such simple rap-
reeentationa are Unaatiafactory.

At the other ●nd of the complexity scale ia the
uae of aophiaticated couplad-channd R-matrix ●nalyses
in data ●valuation. Such analvaes ●re incorporated
in the ENDF/B-V ●valuation for ‘He, 6Li, ‘@B, 12C, and
lSO ~ich include the thrae standard reactions

‘Li{n,t)hHe, 1oB(n,a)7Li and ‘zC(n,n) lzcm

Uhila such application- of R-matrix thee~ are not
new, it ie on?y in relatively recent ti~s that analy-
●aa of ■ufficiant detail and thorcughnaae have baen
●vailable fox light ■yste~.. ao that accurate predicticn~
of results can ba mde in poorly aaasured reaction chan-
oala of a ●yatam. Mditionclly, by application of the
principle of charge indapandance, predictims can imw
be ●xtanded to clfferent iaoapin mcabara of ● mesa syn-
tam.t Such analyaea are provinp mat helpful in prc-
viding charged-particle fusion data, and ● list of re-
●ctione ●naly~ad in this manner ●t Ma Alams Scientific
Laboratory (LASL) library Is included in Table 1. Be-
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FiE. 1. !:eucron ●r.is~icn spectrn at laboratory
anFle5 & ~q and 135C frcr 5.~L-~eq.’ neutr~~ bam-

barc!c.en: C: ‘Li. AB described in Ref. 1, the cal-
cuiate~ urves tic rot include elaatic scattering.

6Gcause tEis tcric iF the sub!ect @f another talk’ at
thi6 conference, nc further din:uasio~ is included here.

The nuclear nedels and theories most comnonly ap-
plied in evaluation of neutron-induced data for heav-
ier nuclei In the FteV region are the spherical ●nd de-
formad optical =delm, Hauaer-Feehbach ❑tatietical
theory, direct reaction theory, preequilibrim theory,
and fieaion theory, A number of theoretical improve.

-rite have occurred over the paat few yeara, ●nd come
of theee ●re cited below. Equally important for data
evaluation, hmever, ham been the develop=nt and uee
of imprcwed wthod~ for determining parnmtare ueed
in mdel calculations and the coming ~f age of ●everal
mltietep Haueer-Feehbach/preequilibrium theo~ codes
that can accomcdat~ tbe myriad @f reaction channelo
open at incident neutron ●nergies of 20 HeV and higher.

The optical rndel is ■till one of the mat impor-
tant toole for a ,good theoretical ●valuation, whether
daaling with spherical or deformed target nuclaue. In
addition to providing a means to calculate ●nerpv de-
pendent total, ●laatic, ●nd reaction croae ●ectima as
-:1 aa ●laetic ●ngular dietributione, it ia aleo Ubed
to compute tranamiesion coefficient that ●re ueed in
Hauser-Feehbach or diract reaction calculations, There
has been increasing :eco~ition over the pm several
years that the old global orbunivmra~l parameter aete
●uch ●s the Wilmore-Hodgaon, Perey, or Becc~etti-
Greenleae6 parmmatere, while very useful for ●~?ping

Table 1. Charged-Particle Remctiona For Which
Croea Srctions Are Available Fron Current LASL
R+tetrix Azmlvsee

Reaction

“TfF,~)i

Tfp,n)31%
3

He(r,P)311e
L

He(~,p)Lll*
6

Li(F,P)6Li
6

Li(p,c03He

Pfd,d)?
~(d,n)3Hen

Dfd,P)Ta

T(d,d)T

3He(d,d)3He
3

He(d,p)6He
4

He(d,d)4He

T(t,t)T

T(t,2n)Llie
4

He(t,t)LHe
L

He(t,n)6Li
L

He(3He,3He)-He

Ep = c-::
Er - 1-11

~p 9 fi-~Q

~p 9 :1->..

Ep ■ 0-2.5
Er - 5-2.5

- o-in
‘d
Ed . ~-1(,

= 0-19
‘d
Ed - O-E

Ed = 0-10

Ed - 0-lo
Ed- 0-15

Et - 0-2

Et - *:

Et - 0-1:

Et - 0-l:

= ?-11
~3Ee

a
Reaulta prelir.inary,

calcclaticna af cpecific nucleic 1: IF far prefer-
able tc usc optica~ ~dcl parafietcr~ that ar~ oyti-
mize< m, r a tmre li~ited re~ion C! A, SUCF.as a ?ar-
ticular shell, at the same time preaervinF the-accepted
trend~ with energv an< FASS of the naramecers, A~ .7
r.?rult, there has been a rene--al of efferts to deter:,ine
realintic optical Farameter* for ●valuatianF eve: thf.

paat fev yearm.

A ve~ useful technique for obtaining neutron opti-
cal parmatere for ●pherical and defbrmmd nuclei that
dose not require axtenaivie automatad leaat-equaren
fitting and can therefore be performed with modeet CO*
puting outlay hae bean develeped ●t Bruyeree-le-Chatel
by Legranp,e ●nd hia covorkere. ‘ This technique, re-
ferred to ae the “’SPRT” =thod, unea ●- and p-vave
●tranRth functions and the potential acactering radius
ae data to aid in determination of the real and (eur-
face) imaginary potential at low en?rgiee and then
uaae the total croeg eection to ●mtahlieh their ●nerp’
dependence. Fine tuning of the potential 16 accor-
plimhed by adjusting the spin-orbit ●trength to match
back angle ●laatic scattering data ●nd the imaginary
●trengthe to retch inelaatic scattering croan ❑ectiens.
Proton ●laatic scattering and polari~ation data can
then be analyzed using the darived neutron parameter
to provide further information conceiving iaoepin terme,
hither ●mrgy behavior, ●tc. The ●nd reeulte are nu-
cleon optical parameter ■uitable for uae over an ex-
panded ●nergy range for a nucleus or nuclei of interest.
Such an ●nalyeia for SJW ia reported at thie confer-

ence’ with ●n ememple of .he quality of fit te proton
polarization data ahnm in Fig. 2.

A ●econd technique that alao averte ●xten~ive
fitting for deformed nuclei hae been developed by



Hadlmd .7 With this ~thod, par-tars ●re determined
fora ■pharical optical potential, which is relatively
ine~ennive to compute, by fitting all available total
art differe~tial ●laatic scattering ~ata. Simple trans-
frm:aticng ●rc then sought that will reeult in realia-
tic defoned mdel parameters by fictin,E a mch mre

reatrtcte? taza eet Ir n fu12y defcnzet coupled-channel
cpticai model calculation.

Freli=ir.ary re~olte from suck an analyeie wre

repcrttti ac f?awell and are reprm!uced in Fig. 3. The
ealid c:r”.-ez re;resezc ne~tron tcts: cross ●ectionn
calculated with a epherical optical mdcl dete~ined
Fy fi::izg ●x?e?i?ez:el data fcw a!l.fiV@ ●ccinide.s IE
Fig. :. ?% daahed curve show for ‘38L_ wae obtained
in a defomed calculation uein~ a simple parameter
tranefc~~:ion tieter=ined by sinultantmouely fittinE
“p~ inelaa:ic a~gular di~tributionc ●t only tw ●ner-

2SOU total croSS sectionsFies [2.! and 3.= *V). The
calculated k“ith the deformd zmdel agree with ettperi-
=nt tc within ~ 3~, far neutron energies betwee~ 50 kel’
and lC ?!tY. Additionally, the geometrical parsmetera
obtained in this enalysie are reesenably ■imilar to
ones ohtsined by Lagrange’c ’]i using the SPRT Mthod.

Another Important aspect of ~del calculetior.e ie
tc properly deecribe gscma-ray ●xlealon, bcth in ●sti-
:z:in~ Fa=.a cey.:eti:icn :c particle e~ission ant! fie-
ior. ir. Sauser-Feah!mch calculation and in actually
cnrputing ga~.z-ray ●rdeeion epectra for uae in ●valu-
2:ir:. E, 1: ?CS: l!acser-Feshbact; c.slculatims, the in-

8 :he crr.du:t Or le\-~l de~sity and pw=d-raYteFra: o.
~:anszis~io: cieffici~nts ia nor-alize~ to the ●xperi-
=ntai value C: 2-~T >/<E~, where CT~> and <D> are the~

averapt ca?.-.z Kittk, ar.? epacirp fcr s-wave reocnancee,
Thie ncrr=li:ctio: directly influence the amount of
Ea==a-:ay erisEic: occurring, ●ithtr in the captura re-
actions or in rorpecition to ~article-emieeicn or fis-
sim reaetione. Fx~eriaental data for <~y> and <E> are

nrc alway~ reliat!c (especially where resonance upac-
inFF are iarFt), and for co~?cwnd syete~e lkcking suck
tiaca, re:iar.ct aus: he ~laced upcn determination of
t!wscquac:itie~ frc: svacematica. Since the observed
spacinE <?. car vary cn: vary drastically between near-
by nuclei ir. closed shell regions, considerable uncer-
tainty can exiet in calculation of gamma-ray emiaeion.

I I I I I I I I 1 I

‘3NblP,pl -1

.06
t

4ExpRoscn e!al ‘1

i

Fip. 2. Calculated and meaeurad proton polsri~ation
from ‘SNb(p,p) ●laetic scattering at 14.5 HeV. See
hf. 9 for detaile.

An ●lternate approach hme bean ■uggeetmd by Card.
~rii that ●laminates -ny of these problems, lead-

ing in tu~, to wre accurate capcure crone sections
where data in unavailable anc ?C a better trearmen: of
ganma-ray corpetitim. Tkfa method is based upon r!e-
terninatior C! the uama-ray ●tren~t}. Cuncticn f(r..}
defined by

~<: >
\ n

f(r.,)c.i’: (sF-r..)dr., ,zF- .
0

kc, :
GDR (2)

fE1(r,) m .
(Cy~GDR)- + (Ef-E;,R)2

Tne strength functicm can be ●xtracted from the analyeia
of neutron capture cross sactione maeured for etable
nuclei or through the ●nalyeie of spectral data reeult-
tig from capture. Since the otrenpth function le ●x-
pected to vary snoothlv between nearby nuclei, sozc
of che problem mentioned earlie- can he elir.ina:ed,
and one ca~ uae it vith increaaed confidence.

bcth wacticns ahc%r. in Fi,c. .4; the vaetly tlfferc::
capturt crmsa aectione reed: ●ntirely frc: t!le ?iffcr-
●nt FindinF ●rcrgie~ and level den~ities used in the
cwo caeas.

to: — —- ——.

ToT&: CROSSSECTION

.

180,

i__-EG@ m’
MuTRON ENERGY,~V

rig. 3. Calculated and meaeured neutron total croes
●ectione for five ●ctinide nuclui. See Ref. 7.



A lmge number of codes useful for ●veluationr haa
been daveloped in many courtrien, hit ■pace does not
~nnit ● thorough diecueaiol here.

One major advm.ce in the oaet several yeara that
k-ill be diacucaed, however, ie the cevelopnenc of sev-
●ral multiatep Hauaer-FeBhbach htatiatical-preaquilib-
riwt codes that perdt calculation of moat important
reactiorm in tha HeI’ re~ion.

‘i’htn ‘hec-ni’l’sofIXDF.’B ewluatora, these codee incl.x% the HALTER
code developad ●t Hanford Engineering 3evelopmant
Leborato~, the TW1’ code %oz Oak F!due Sakional
Uboracory, the STAPRE’S code vrittm in Auacrla and
●xtenaivaly used ●t Leurence Livemorc Laboratory and
Brookhaven %ationnl Laboratory, and the GNASH” code
developed at IASL. Theme codes, tier umed in combina-
tion with spherical ●nd defonaed optic,ll mo$el codes
anti the older reaction theory code CCM!WC, prwide a
capability for calculating all importar.t ruaction ee-
quencea up to 20 $fer or higher.

Typical reaction eequencea that car. he included
in multietep calculation ●re ehwn in Fig. 5. The case
Illustrated is for neutron-induced raact(.ooa MI ‘Sy
uhich were recently calculated @th tho GWASR code. 1s

Ihe double am-e indicate the path from fihe incident
channel to the firat compound nucleus “Y*, whone de-
cays correepork tc the binary (n,v), (n,n), (n,o), and
(n,n’) reactions. The variozs compound nuclei ehom in
the diagra~ are populated in ●pecific ●nergy, ❑pin,
ant parity states, ant ●ach rucleus ie pew.itted tc de-
cay by n, p, Q, andfor Y emiamion until the decay ●e-
quencee tem.inace. The most complicated oequencee
shown in Fig. 5 are (n,2ny), (n,2npl, (n,2n-!), and
(n,3~) reactiona, although calculaciona ar~ not IIrited
cc theme.

All feur multietep Haueer-Feehbach codee mentioned
●bo~’e can carry out theas calculations with full al]ow-
●nce for angular mcmntum ●ffects. The TSG, HNSER,
and STAPRE codee include width fluctuation corrections
for the lwer ●nergy calculations, whereas GSASE, vhich

.1.-

●

*

;

.Oi

●
● .

.OD1“
m .1 I

rig. 4. Rb(n,y) ●nd Rb(II,y) croeo sections between
10 keV ●nd 3.5 wV. See Ref. 12 for detaile.

is designad for highar energy calculattiona does not.
All four codee include preequilibrium -dele that are
ueed to correct the binaq reactions for nonequilitrim
●ffects. In the caee of =C, a new notel fdes:ri%et

in ● later paper’s) haa been included te incrrpcrate
conservation 0? angular momentum in the preeqci~ik:ic:.
etep. l%is mdsl ●rEurea consistency hetw~ez tk sta-
tiacical and mreequiliSriur r,arts of the calculations.
Particle spectrn are calculated ir all four codes, ant
all ●xcept HA~FEF alsc eutput rams-ray spectra. %C
HAL’SER,GMN?, and ~’C codaa allo~” Iep=t Pf exter:n!?:m
coupute? direct-reactic.n crcac ●ections tr specific
●tateo, which are couhinet htitk. the Hauber-Feehtact.
calculations and, in the came cIf CXASP ant ?!Y, arc
included ●xplicitly ir. th~ Cacm-ray caficades. ;%
TM and IWSER code~ calculate co=pound nucleus a~r::ar
dietri~urions, whereas G!iASli anti STA?RE rely UPC: ex-
ternal codee for these ●ffects. STAPRE, !UIL?5E?, amd
GRASP 911 have fissim channel~, with a rlcuklc-hz=;ei
barrier being avnilat.le for uee in HWSER and STADEE.

In the pact f- vears these codes haw. been ●xten-
●ively developed and umed in eupport of date ●raluaticn,
am+ ●xanplea of calculations are given belov. ?h~ XU-
clear Hodels Subcommittee of the Cream Sccticn Evalua-
tion Uorkina Crwp has lman carrying out code compari-
eom atudiea with thaae ●od other codes, and ●ven mre
datailed compariaone have been made btween codes used
●t LLL md LASL.20

Exanples o! Recent Czlcdatio.ls

There are a nucber @f exa~:?.es that can he cite?
where the abovt codes hav~ been successfully appiied
to ●valuation problems. The l~AL’~~R code has beer, I:seL?
axtennively by !!ann and Schenter-” in calculations C:
actinide crefis sectiorw for ‘NDF!5-V. SiEilarlv ?2

:: ?Irhes used TK fcr E\TF~E ●valuations of ‘QCa,
:}

.~l,
and Pb,2h anf! for CIJ ant * calculations tc 32 ?!eV..-
Calculatlorm ~“lthSTAPRE include comprehensive analyses
by !!. Gardner o! neutron-induced raactions on zircnniur.
isotopes’c anti F+ P. Gardner of neutron reactlcns on
33 tar~z : states of ““’ P’Lu.2’ Mditiona:lv, an an-
alvaia- of neutrcn reactions en Fariur, inotc~es h-ith
STtiRE !;

%+--” ‘“‘
l\●

n

my Rb

TIE. 5. Sample reaction
interactions with “Y ●m
le).

decay eequencen from neutron
calculated by Arthur (Ref.



STAPREhave been perfomd. Recant mnalyms with the
QCMH code include ■tudiam of neutron-inducad raactions
co 20 lk~ CR a total of 10 Imotopes of vttrium and zir-
coniw. to LO ?ter for ‘“Fe ant! “Fe.zh to 20 Her fcr

To Illustrate th~ pcte:tial ef suck calculation
when care is taker. witk. ~ar:fite~izatione, Figs. &@
Sh.x :?=;asisor,s %tvee: calccla:eti ●nt ●xperimctal
cros~ sections frrrlghe C%ASEa~alysis of yctriu~ and
zirconiu: isotopes. In thjs stdy, cmsis:ency waa

requi:ad C? the optfca: *dcl para?eterizations for all
the yttriu- ●nti ZirCCr.jL- isoto~es. an: several tiiffer-
●n: :ype~ C: naut?:r End cha:p+~articl~ e2cpariaeRcs
uerc fit to detemine cptical parameters. In addition,
a cartfc: sid~ waf R-de ua~np Gardnc-r’s mathod’z tc
@b:ain relia?.]e FaX,a-ray strenEth fU21CLiOIlS.

Gazme-ray ●ner~- epectra fror, GNASHcalculati@na2s
fcr Ire: ~re cerpzred :0 the ●xperimental data C! Chap-
nm. e: nl. ‘: a: f ....r Incidefit neutrcr ●nergies ir Figs.

9-12. In thie case, the model paranaters were detar-
r.inet ●ntirely froc other masuremsnte, so the compar-
iscne with the game-ray spectra provide a test of the
calculations. Although the calculation agree rela-
tively poorly vith tha Chapman data ●t 14.55 HsV (Fig.
12, they ●re in reasonably pod ●greement with tha:u;a
of E?ake et al. “ at 14.2 HaV, ●hovn in Fig. 13. m
there a?pears tc be a discrepancy !m=cween the twc ex-
peri=nts near lL !leV, and Artt.ur’r calculation tend
tc supparc Draka’a maasurercect.

sult ;ror Fe(:,n’) ;eactio;~ cc discrete st~tes, vhich
Dh3A ca:culaticnE anti are strmgly
The an~~lar dictlibucicne in tha ccn-

tinuum region wre calculated f~gr semiemplrical rela-
tionships datesmined by Kalbach and baaed on preequi-
librirm theosy. Ihe breaka in the aprctrur in the con-
tinuur. region in~icate the Feundarieu cf +?ie’: uide
■econdary ●nergy kina, ●ach rf k*lick was Ffve= a t3er-
●rate ●npular diatributicn fro: the Ka!Sach fcrmlimr..
This repreaentatier reaultr fro= a: ad hoc mct:fica:ic:.
of the EKEF~F.forrat cc accoaodate the pr@T.@-J~..V? !:r-
ward Deakinc ef spectra at ●ner~ies a!?ove ~~ !%.:.

The new mltiatep Hsuser-Feahbach codes and tha
oldar direct reaction and compound nuclaua theory code~
provide a vary usefu] array @f tocls fcr optinizinF ~a:a
●valuations. It is usual:y nrefcrahle in caees >.here

maasuremnt~ are arailab?e te bast eva:uated :c:e: and
fiaaion crews sections cm direct ●xperinentai datb.
In such caaes, the use of nuclear mdels ca~ en~ur~

cmsiatency C: the ze=ainirF e.:al:a:et cress se::i::.~
threugk d~viatlon cf parameters which =i-ultane~:-:..
describe all channels. Evnluatima detrreinct vi:!.
this natch Q! cheo~ ant •x~e?i~ez: cffer the a&:az:Gzc
that the neutron, ea=.a-ray, ar% :fiarned-parciclc ti:.cz
eatia?y the ba~ic reqt.ire-e:ts ~,f cor.serva:icn r! :::L:
●nergy and flux.

“7
\Ca.l.wohv

\

+

f,~l.740MeV

\
Em.s.ttouov

\

●

‘1

Fig. 6. Heaaured ●nd calculated ●laatic and Inelaatic neutron scattering from ‘%,
See Ref. 18 for de:aila.
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GAMMA RAY ENERGY (MEt’)
●

1

Fig. 9. Calculated gamma-ray emission ■pectra for
8.76 -!feV bo=hartrent of Fe compared to the measure-
ment by Ch.ap=n ●t al. (Ref. 32) at 125’.

GAMMA RAY ENEi?GY (MEV”)
.0

Fig. 11, Calculated gmma-ray emimsion h,}ectra for
14.55-MI’ botiardmmnt of Fe cowpated to tha rnasurm
mant by Chapman ●t al. (Ref. 32) at 125”.

~1
0.0 2.0 4.0 0.0 SD 10.0 120 I

GAMMA RAY ENERGY (MEV)
.0

Fig. 10. Calculated gmme-rmy ●mimssion spectra for
11.5-%’: bombardment @f Fe corzaared cc tha mascre-
ment by Chap~n e: al. (Ref. 32) a: 125°.

., 11

- 0.0 2.0 ill ao 0.0
!

100 120 140

GAMMA RAY ENERGY (MEV)

Fig. 11. Cmlculatsd game-ray emission spectra for
18.85-He~’ bombardment of Fe comparmd to the measure
mm by Chapman ●t al. (Ref. 32) ●t 125”.
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NEUTRON ENERGY (MEV)

Fig. 13. Calculated gamma-ray ●mission spectra for
14.2-MeV neutron bombardment vf Fe compated to the
measurement of Drake ●t al. (Ref, 33) at 90”,

h%ile nuclear theory has been frequently put to gcoc
uae in evaluations, its application has canded to be

somewhat piecmeal ktith the refiult that energy conaerva-
ticr has frequently net been satiafied. Exanples of
this problec are nrovided in a recent study of energy
balance in ESDF!?l-V evaluations by MacFarlane. ~s KER~Li
factcrs, which are fiimply the enerfl given tr charged
reacticrm products, were conputed for a variety cf non-

fiesile nut?.ti at a selection of incident energies by
subtracting the energy carried away by ne~]trons and
protons fror the total ener~ (E+@) available tc each
reacticr.. Lower and upper lirtits based on general con-
siderations were determined for the KERW factors for
mcsc reactior.s, and tests were made tc see if the EST!F/B-
6-’: fiata satisfied the limits.

?lacFariane’s reaulta are reproduced in Table II
where each evaluation tested US rated as G (good), F
(fair), or P (poor) for the energv ranges THER
(E 1 keV), FAST (1 keV-2HeV), and FUSN (2-20 HeV).

n
A rating of “P” mssns that ~PM factors computed in
this manner are inadequate for wst applications and
indicates rather significant ( 1-10%) violations of con-
ser’:ation of total ●nergy.

A disturbing number of “P” ratings occur in Table
II. While the KERM diagnostic ie quite sensitive and
can indicate rather small violations of ●nergy conser-
vation, a number of casea flagged in Table II do repre-
eent significant problems. Additionally, one ❑ight
take the poinr of view that conservation of energy

should be eaamtially inviolate in ●valuations, in much
the same manner that ●valuators require that all neutron
cross sections aum to the total cross section. Care-
ful, consistent une of nuclear th~nrv in fitting experi-
mental data can help remmve problems of this nature
in futur? ●valuations.

~

Significant advancea halve occurred over the past
several vears in applying nuclear theory to dats eval-
uations. Areaa highlighted here are the uoe of R-matrix
theory for improving and ●xtending light element evalu-
ation, development of improved methods for determining
model parmaetera, and the availability of several new

I

NEUTRON ENERGY (W)

Fig. 14. Calculated neu:ron emission spertla at
O, 90, and 180” from 36-!teV neutron bombardr.ent
of Fe.
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Fig. 15. Calculated gamma-ray ●mimaion opectrum from
40-uv neutron bombardment of Fe. ‘if~(~!;) ~~~~r~~c~~~n~alcula’ed “sU(n,f) and. See Ref. 31 for details.

Ir
TABLE F

GLALITATIVE RATING OF EWR~ BALANCEFOR M4iFRIAlS FRO?!EA~F/3-v
(G=Good, F-Fair, I’=Poor) EY ENERG-iR4XGE

(THE?.~1 kel’, FAST=l keV to 2 YeV, FIJS!{=2 to 20 Uet’)

Material

H-1
H-2
Li-6
Li- 7
Be-9

B-10
c
N-16
N-15
-16

F-19
Na.23
Ug
U-27
S1

P-31
s-32
c1

mm FAST Fusx—. —

G G G
G G G
G G G
G G G
G G G

G G G
c G G
G G G
G G F
G G G

G c F
G G F
G F F
G G F
G G c

G G F
G G F
# G ●

Material THER

K ●

Ca G
Ti G
v G
Cr ●

Pm-55 P
Fe ●

co-59 G
Ni c
Cu *

Ho ●

Ba-138 F
Ta-181 P+
W-182 P
hkla~ P

u-lE15 P
lf-lB6 P
Pt ●

FAST

●

G
F
G
●

P
F
P
r
●

●

F
P
P
P

P
P
G

~le;

P
G
F
F
P

P
P
P
F
●

d
F
P
P
P

P
P
F

●

Tests msked by element ●ffect
+

Possibly maskd by internel conversion



-ltimap MmePFe8Mach/pr@equll ibrim del codas
that permit rmhar cmplate calculations in ths 1-40
WV region. Additionally, problem Wth eiwrgy balance
In ENDF/B-V evaluation ●re noted, and w conclude that
mor(. con~intent uee of theory in ●valuatlona la needed

ao t~at total ●nergy conoemation in maintained.

Time and #pace limitations have dictated that the
nccpe of this paper be limited. There are many other
devtlc?~nt~ that should lead to furthtr impreveaent
IL theoretical calculation. Horc sophiaticatadJ:ia-
.eim models ●s described by LYnn, 3’ Back et al., end
Delagrangr ●t al.’e are FLanned or in use ir certain
model codee, and ●dvanceo are being ❑ade in preequi-
likriur theory which cffer pro=ise of mere accurate
analyses in the future. Efforts to base mndel calcula-
tions on r.ore fundamental theories, particularly re-

:;:::!,
rcicros.co~ic descriptions of nuclear level den-

and th. optical !mdel,’c show proaise for
au~lied usa~e. An imoroved theoretical deacrivtion of

;7.

13.

]4,

15.

16.

. . .
neutron energy spectra fro~ fission has been develcped,’l
and a new %aster” cede that wiZl cocbine an~ refine
some of tha mdels presently usedb;a under development l?.
at Lawrence LIvermnre Ldb@ratorY.

Finally, prograaa in developing a unifed theory to 18.
include both Hauaer-Feshbach and dire::,:action.mch-
amisme has been wde in recent yaare, and ~lti-
atep direct re~~tion calculations as carried out by
Ta=cra et al. might prove useful in axtending the 19.
evaluatec date base tc higher ●nergies.
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